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AFIT-ENP-MS-16-S-075 

ABSTRACT 

The purpose of this research was to evaluate an existing Van de Graaff generator 

facility for use as an EMP research tool.  This facility’s location on WPAFB may offer a 

unique opportunity for analysis of EMP effects and validation of electromagnetic codes, 

and thus is potentially of interest in its present operational format. 

In order to assess the Van de Graaff, the unclassified Military Standard 464, which 

specifies a testing free field wave as having an intensity of 50 kV/m with a time-to-peak, 

t100-0, of no more than 5 ns, was used as a baseline for free field analysis and this temporal 

standard used as a basis for generated currents.  Unfortunately, the free field 

measurements were subject to substantial electronic interference due to electromagnetic 

coupling from internal wall reflections, invalidating the assessment. Therefore the primary 

research focus was to replicate the temporal character of the current through the Van De 

Graaff, which would represent the most direct coupling that could be expected from a free 

field wave. The research indicated a generated time-to-peak (a.k.a rise time) of 70 to 100 

ns can be consistently produced, which is an order of magnitude greater than that of the 

Military Standard 464. The fall time is much faster than specified in Military Standard 464 

due to substantial ringing in the line. Efforts were made in this research to match output to 

Military Standard 464 using impedance matching and capacitive decoupling.  Proposed 

improvements to the VDG system are described in this thesis. 
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EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS 

AN ELECTROMAGNETIC PULSE GENERATOR 

I. Introduction 

Purpose 
One of the effects of a nuclear explosion is the production of a strong, rapidly 

rising electromagnetic pulse (EMP) capable of degrading the performance of critical 

electronic and communications systems that are integral to military hardware and war 

fighting functions.  The EMP effects on critical systems and components must be 

characterized in order to protect against them. This requires testing and modeling at all 

system levels using consistent simulations in order to quantify the margins of uncertainty 

in failure analysis. 

A nuclear weapon generated EMP is a result of a unique set of coupled conditions, 

making it relatively difficult to replicate. Therefore, establishing a generating capability 

that creates a reasonably close facsimile to a nuclear EMP is fundamental to support the 

study of EMP, and analyze models and methods for EMP hardness. This research evaluates 

an existing Van de Graaff generator (VDG) facility belonging to the Air Force Research 

Laboratories (AFRL) for its application to the study of EMP problems. The EMP free field 

rise time and intensity are of greatest interest.  The VDG during a discharge is shown in 

Figure 1. 
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Figure 1. The AFRLVDG during a discharge. Electrical current follows random discharge paths  
through the air. 

Approach 
A VDG generates a current pulse by mechanically moving charge from a source to 

an ungrounded conducting surface. The charge build-up creates a large electric field 

between the surface and nearby grounded objects; these act as two electrodes in a circuit. 

Once the breakdown field is reached, the air is ionized and current flows between the 

electrodes (discharge), resulting in an electromagnetic disruption. The temporal current 

flow can produce radiant electromagnetic fields that travel through the air and interfere 

with electronics. (Kodali, Chapter 2)  This effect may be exploited to study the effects of 

EMP and to validate models associated with EM propagation. Additionally, the current 

flow between the electrodes during discharge can act as a source for currents replicating 

those resulting from a coupled EMP event. These are the overall research focus. 
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Figure 2. Time dependent waveforms from three sources. (Derived from Gabrielson.) 

There were several difficulties which were overcome in this research. Initially, the 

free field waveform, as measured on the D-dot sensor had heavy oscillations and did not 

represent the desired Military Standard 464 function. The oscillations were theorized to be 

the result of a combination of poor impedance matching and wave reflections from 

laboratory surfaces. Some oscillations were removed by creating a strike plate ground 

electrode with a surface that matched the charging globe diameter; essentially impedance 

matching the VDG spark gap. The problem with the laboratory surface reflections was not 

able to be fully overcome. Control of the ground plate current and alterations to match the 

temporal characteristics of the desired EMP waveform met with more success. Current rise 

times for a pulse could then be controlled so as to produce reliable shots with rise times 

similar to those experienced from EMP. 
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Conclusion (Review) 
The primary conclusion from this research is that the current operating condition of 

the VDG facility cannot generate a Military Standard 464 compliant free field waveform.  

Proposals are offered for modifications that would increase peak electric field maximum in 

the pulse and reduce the rise time to the peak electric field in order to produce a waveform 

that may closely represent the Military Standard 464 waveform and approach suitability for 

validating electronic devices. 

Sponsorship 
The research was supported through guidance and funding from the Nuclear Effects 

and Analysis Division, Nuclear Capabilities Directorate, Air Force Nuclear Weapons 

Center, Kirtland Air Force Base, New Mexico. Technical support and laboratory access 

were made possible by the Air Force Research Laboratory, Materials Directorate.  
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II. Theory and Assumptions 

Military Standard 464  
The unclassified Military Standard 464 is the test standard used for evaluation of 

military components that may be subject to EMP. The standard states that in the absence of 

other requirements, equipment designated to be EMP hard must operate through an EMP 

field described via a double exponential function.  The double exponential function is the 

product of a scalar, a charging function, and a discharging function.  The standard is 

developed, defined, and illustrated in Equation (1) and Figure 3 respectively.  (Military 

Standard 464, March 18, 1997) 

 𝐸𝐸(𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠) = �e−∝ 𝜏𝜏⁄  𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − e−
𝛽𝛽
𝜏𝜏�  𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠�  ×  𝐸𝐸0 [𝑉𝑉 𝑚𝑚� ] (1) 

Increasing the charging exponent, β, increases the rise rate and peak intensity and 

decreases the rise time.  Increasing the discharging exponent, α, significantly affects both 

sides of the waveform by increasing the rise and fall rate, by decreasing the rise time and 

fall time and by decreasing the peak intensity. Increasing the time constant, τ, increases 

rise and fall times. Military Standard 464 sets nominal values of α/τ = 4×107 sec-1, 

β/τ = 6×108 sec-1, and E0 = 6.5×104 V/m. 
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Figure 3. The Military Standard 464 EMP waveform rises to 50 kV/m.  The prescribed maximum time to 
peak, t100-0, is 5.0×10-3 µs.  The time to fall from peak intensity to 10% of the peak intensity, t10-100, is  

5.9×10-2 µs. 

Van de Graaff, VDG, and Flash Lamp Discharge   
Although not initially intended for VDG applications, flash lamp model theory was 

used to analyze the discharging VDG circuit.  This implies that the “open air” spark (flash 

lamp) functions as a charge switch (Markiewicz, pp. 707-711).  The VDG and flash lamp 

discharge systems differ in that the flash lamp discharge filament geometry is laterally 

constrained by a glass enclosure between two electrodes and the discharge gas is well 

controlled, while the VDG discharge filament geometry is only constrained by the 

electrodes themselves. The VDG gas is ambient air, subject to dust, humidity, and residual 

ionized air molecules. The borrowed theory enables predictions of how independent 

changes in circuit capacitance, C, electrode separation, l, and initial discharge potential, Vo, 

impact the system time constant, tFWHM, which is directly proportional to the rise time, 

t100-0. 
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During VDG charging, charge, q, is gradually delivered to the VDG and gradually 

builds an electric field flux and high potential along the axis between the electrodes.  The 

electric field flux, ΦE, is equal to ∮𝐸𝐸�⃗ ∙ 𝑑𝑑𝐴𝐴.  The field flux gradually becomes sufficient to 

ionize the air which allows a conduction current, ic or 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

, to pass between the electrodes. 

As the electrodes are discharging, the conduction current takes on erratic paths resulting in 

a flux displacement and a radiant electromagnetic or EM field is developed as a 

combination of the time dependent current legs resulting from the current paths and the 

resultant circuit loop. While charging, the radiant EM field is weakly driven only by the 

gradually changing displacement current, id, which is the product of 𝜀𝜀𝑜𝑜 and 𝑑𝑑
𝑑𝑑𝑡𝑡
𝛷𝛷𝐸𝐸, where 

𝜀𝜀𝑜𝑜 is the permittivity of free space.  The id exists during both the electrode charging and 

discharging phases because ΦE is changing during both phases but it does not transfer 

charge across the air gap during the charging phase.  Once the VDG begins discharging, ic 

increases from zero and id  reverses its direction of flow such that the two current 

components oppose each other.  Both ic and id are linearly dependent on q.  The id is 

linearly dependent on q because it is equal to 𝜀𝜀𝑜𝑜
𝑑𝑑
𝑑𝑑𝑡𝑡 ∮ 𝐸𝐸

�⃗ (𝑡𝑡) ∙ 𝑑𝑑𝐴𝐴 and 𝐸𝐸(𝑡𝑡) = 𝑉𝑉(𝑡𝑡) 𝑙𝑙⁄ , where 

𝑉𝑉(𝑡𝑡) = 𝑞𝑞(𝑡𝑡) 𝐶𝐶⁄ .  Expressed differently, 𝑖𝑖𝑑𝑑 = �𝜀𝜀𝑜𝑜 𝐶𝐶𝑙𝑙� � 𝑑𝑑
𝑑𝑑𝑡𝑡 ∮ 𝑞𝑞(𝑡𝑡) ∙ 𝑑𝑑𝐴𝐴, which has a linear 

dependence on q. 

Electrons ionized from the air further increase ic.  The space charge left behind after 

ionization is reduced, but does not eliminate ΦE.  The source driving the radiant EM field 

transitions from id prior to discharge to ic - id post discharge.  The post discharge radiant 

EM field is much greater because the rate of charge transfer is very high, i.e. time 
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dependence increases.  The relationship between the magnetic EM field component, B, id, 

and ic follows Ampere’s Law as shown in Equation (2) where μo is the permeability of free 

space. Figure 4 illustrates Ampere’s Law after discharge, where the time dependent change 

in ΦE and q contribute to B. From this a time dependent electric field is formed along with 

a spatially dependent magnetic field.  

   ∮𝐵𝐵�⃗ ∙ 𝑑𝑑𝑠𝑠 = 𝜇𝜇𝑜𝑜 �𝜀𝜀𝑜𝑜
𝑑𝑑
𝑑𝑑𝑡𝑡
Φ𝐸𝐸 + 𝑑𝑑

𝑑𝑑𝑡𝑡
𝑞𝑞� 

 

𝐵𝐵(𝑟𝑟, 𝑡𝑡) =
𝜇𝜇𝑜𝑜{𝑖𝑖𝑑𝑑(𝑡𝑡) + 𝑖𝑖𝑠𝑠(𝑡𝑡)}

2𝜋𝜋𝑟𝑟
 

 

(2) 

 

Figure 4. Post discharge VDG illustrates Equations (2) and (3) and shows the E which is the electric 
component of the radiant EM field.  Since 𝑖𝑖(𝑡𝑡) is rapidly changing, the radiant B(t) and E (t) fields must also 
be rapidly changing.  The negative charge shown on theVDG which is isolated from the ground flows to and 

re-combines with the positive charge shown in the ground below the strike globe. 

Per Faraday’s law, Equation (3), as the magnetic flux changes with r and time, it 

generates a potential, ΔV or V, which generates a current.  Per Lenz’s law, the negative 

sign preceding the derivative indicates that the new current is directed such as to generate a 

new B field to oppose the B field which created it. 

   −𝑑𝑑𝜙𝜙𝐵𝐵
𝑑𝑑𝑡𝑡

= −𝑑𝑑�∮𝐵𝐵�⃗ ∙𝑑𝑑�⃗�𝐴�
𝑑𝑑𝑡𝑡

= −𝜋𝜋𝑟𝑟2 𝑑𝑑𝐵𝐵
�⃗

𝑑𝑑𝑡𝑡
= ∆𝑉𝑉 (3) 

The term ΔV is not the potential difference between the electrodes.  This ΔV, as 

shown in Figure 4, extends orthogonally from the current path to the edge of the circular 
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integration area, dA, and relates to the E per Equation (4) where the integration area radius, 

r, is as shown in Figure 4. 

   𝐸𝐸(𝑟𝑟, 𝑡𝑡) = ∆𝑉𝑉(𝑟𝑟, 𝑡𝑡)/𝑟𝑟   (4) 

The changing B and E relate to each other through the speed of light, c, per 

Equation (5) since the propagation is expected to be through free space. 

  𝑐𝑐 = 𝐸𝐸/𝐵𝐵 (5) 

The E time dependence is expressed in Equation (6). 

  𝐸𝐸�𝑟𝑟, 𝑖𝑖(𝑡𝑡)� = 𝑐𝑐𝜇𝜇0
𝑖𝑖𝑑𝑑(𝑡𝑡)+𝑖𝑖𝑠𝑠(𝑡𝑡)

2𝜋𝜋𝜋𝜋
   (6) 

Both E and B are changing in time due to conditions described in the next section 

and they are orthogonal. They eventually resolve to represent an EMP, similar to that of 

lightning. 

Flash lamp and VDG devices are similar in that they both pulse electrical 

discharges through gases. Therefore flash lamp discharge theory was used in the analysis 

of the VDG discharge. The primary difference between the two devices is that the current 

filament diameter and arc length are controlled more precisely for flash lamps. The flash 

lamp arc length is essentially confined to the straight line distance, l, between the 

electrodes and the discharge gas is controlled.  For the VDG, the path length, 𝑙𝑙 + 𝑑𝑑𝑙𝑙, 

meanders similarly to the randomness of a lightning discharge path, depending upon 

uncontrollable parameters such as random dust, humidity, and air paths through the 

laboratory. 

The stochastic VDG discharge variations result in fluctuations in the arc diameter 

d, and the path delta, dl, and subsequently to the components of Z which will be further 
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described.  These variations are also further manifested in changes to the electric field 

intensity, Emax, and time-to-peak, t100-0.  For this reason, maximizing useable data 

collection is especially important because it ultimately averages out the effects of the 

stochastic variation. The only VDG circuit variable which is directly and easily 

manipulated is l; neither l nor d may be varied independently of the other.  Without the 

ability to independently manipulate l and d, their independent effects on the waveform and 

on Z cannot be precisely determined.  Nonetheless flash lamp theory is applied to the VDG 

discharge and the application will be shown to be marginally valid for predicting the VDG 

arc characteristics. 

Data Collection Sensors 
Two different sensors were used for data collection.  A free field D-dot sensor was 

initially intended to be the primary collection tool because it senses an EM wave directly. 

A current viewing resistor (CVR), was used to indirectly measure the current along the 

conductors attached to the ground electrode. It was relied upon for a majority of this 

research. 

CVR Operation 

The CVR shown in Figure 5 is a small, known, constant-value resistor connected in 

series after the strike globe in the ground discharge cable.  The V(t) across the resistor rises 

and falls and is recorded on the oscilloscope. From V(t) and the constant R, the i(t) is found 

from the Ohm’s Law relationship 𝑖𝑖(𝑡𝑡) = 𝑉𝑉(𝑡𝑡)
𝑅𝑅� . 
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Figure 5.  The CVR was used to measure V(t) in the ground line after the strike globe across a constant, 
known resistance. 

 

A ground plane D-dot sensor measures the electric field time derivative by sensing 

the electric field flux through a known constant sensor equivalent area, Aeq.  The 

“equivalent” descriptor denotes that a curved capacitive area is equivalent to a known area.  

The ground plane sensor transfer function outputs a voltage, derived from Gauss’s Law, 

Equation (7). 

 �𝐸𝐸�⃗ ∙ 𝑑𝑑𝐴𝐴 = 𝐸𝐸𝐴𝐴𝑠𝑠𝑑𝑑 = 𝑞𝑞
𝜀𝜀𝑜𝑜�  (7) 

The charge, q, on the Aeq flows to ground through a constant known resistance.  

After re-arranging and taking the derivative, the ground plane sensor transfer function 

results in a voltage in time, V'(t), as shown in Equation Set (8).  
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εoAeq

dE
dt

=
dq
dt

= i(t) = V′(t)
R�   

V′(t) = εoĖ(t)AeqR = Ḋ(t)AeqR 
 

(8) 

A balun equipped free field D-dot sensor combines two back-to-back ground plane 

D-dot sensors to form a dipole antenna.  The balun combines the back-to-back ground 

plane sensors of equal and opposite polarity signals to output a single average voltage in 

time.  

Specifically, the sensor and balun model used in this research were the Prodyne 

AD-40 and the Prodyne BIB-105D respectively.  They are shown schematically and by 

photograph in Figure 6, Figure 7, and Figure 8.  The new transfer function, V(t), for the 

balun equipped free field D-dot sensor is the same as that for the ground plane D-dot 

sensor.  The balun equipped free field sensor transfer function applied specifically to the 

available equipment is then as shown in Equation (9). (Edgel, "Free Field Sensors and 

Balun") 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉′(𝑡𝑡)−�−𝑉𝑉′(𝑡𝑡)�
2

= �̇�𝐷(𝑡𝑡)𝐴𝐴𝑠𝑠𝑑𝑑𝑅𝑅 = �̇�𝐷(𝑡𝑡) × 0.01 𝑚𝑚2 × 50 𝑜𝑜ℎ𝑚𝑚𝑠𝑠   (9) 
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Figure 6.  The Prodyn model AD-40 free field D-dot sensor is constructed from two back-to-back ground 
plane D-dot sensors.  The two 50 Ω resistors, the two capacitive hemispherical areas and the flat circular 

ground plane are shown. 

 

Figure 7. Free field D-dot sensor area vector sensing EEMP field orthogonal to the Poynting vector.  The large 
circular disk is the common ground plane.  

 

 

Figure 8.  The balun (Prodyn Model BIB-105D) on the left connects to the D-dot sensor  
(Prodyn Model AD-40E®) on the right. 
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Highly Capacitive Circuit Elements 
All circuit components of the VDG system exhibit inductance, capacitance and 

resistance. The VDG dome and the ground strike globe capacitance are modeled in Figure 

9.  The theoretical capacitance of the VDG dome was calculated as the addition of its top 

and bottom parts.  The top part is a hollow metal hemisphere which is set over the bottom 

part; which is a hollow horizontally oriented half toroid.  The capacitance of a hemisphere 

is taken as half that of a sphere and is shown in Equation (10). (Serway & Jewett, p. 724) 

 𝐶𝐶ℎ𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒ℎ𝑠𝑠𝜋𝜋𝑠𝑠 = 2𝜋𝜋𝜀𝜀𝑜𝑜𝑟𝑟ℎ𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒ℎ𝑠𝑠𝜋𝜋𝑠𝑠  (10) 

Equation (11) is the empirical equation for the capacitance of a half-toroid, Chalf-

toroid, in picofarads.  The toroidal dimensions DMajor and DMinor are in centimeters and are 

defined in Figure 9 (Johnson, Ch 2, Pg 7). 

 𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻−𝑇𝑇𝑜𝑜𝜋𝜋𝑜𝑜𝑖𝑖𝑑𝑑 = 0.185𝐷𝐷𝑀𝑀𝐻𝐻𝑀𝑀𝑜𝑜𝜋𝜋 + 0.115 𝐷𝐷𝑀𝑀𝑖𝑖𝑀𝑀𝑜𝑜𝜋𝜋   (11) 

 

Figure 9 Toroidal Dimensions 
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Whereas the VDG dome is the combination of a hemisphere and a half toroid, the isolated 

capacitance of the VDG dome, CVDG, is shown in Equation (12).  The calculated capacitive 

values for the highly capacitive VDG dome and the ground strike globes are shown in  

Table 1.  The closed form calculations do not account for interactions with other 

structures which, if accounted for, would increase capacitance. 

 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐶𝐶ℎ𝐻𝐻𝐻𝐻𝐻𝐻−𝑡𝑡𝑜𝑜𝜋𝜋𝑜𝑜𝑖𝑖𝑑𝑑 + 𝐶𝐶ℎ𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒ℎ𝑠𝑠𝜋𝜋𝑠𝑠 (12) 

 

Table 1  Calculated closed form capacitance. 

Calculated Capacitance, C 

VDG Dome, 
CVDG 

Original 17” Diam 
Strike Globe 

Replacement 30” 
Diam Strike Globe 

42 pF 24 pF 42 pF 

Circuit Impedance 
An assumption was made that the best way to obtain usable data would be to 

minimize circuit impedance, Z, at every opportunity.  Impedance as derived from the 

reactance, X, and the resistance, R, vectors is diagramed in Figure 10 and is further 

expressed mathematically in Equation (13). Both X and R always oppose current. (Serway 

& Jewett, p. 933) 
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Figure 10. Right triangle illustrating Z as the vector sum of X & R. 

 

  𝑍𝑍2 = 𝑅𝑅2 + 𝑋𝑋2  (13) 

The R component of Z defined in Equation (14) is the product of the material 

resistivity, ρ, and the distance traveled, l2, divided by the cross sectional area, A, of the 

current carrying path (Serway & Jewett, p. 757). 

 𝑅𝑅 = 𝜌𝜌
𝑙𝑙2
𝐴𝐴

 
(14) 

The X component of Z is mathematically defined in Equation (15) as the difference 

between the inductive reactance, XL and the capacitive reactance, XC.  The inductive 

reactance is the product of the radial frequency, ω, and the system inductance, L.  The 

capacitive reactance is the inverse product of ω and the system capacitance, C.  (Serway & 

Jewett, pp. 928-930) 

 𝑋𝑋 = |𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶| = �𝜔𝜔𝜔𝜔 − 1
𝜔𝜔𝐶𝐶� � (15) 
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Impedance is minimized when its R and X components are minimized.  Changeable 

circuit dimensions and components affecting R and X included the electrode separation 

distance, the ground line, the strike globe, and the VDG. 

Arc Diameter and Electrode Separation 
The based upon observations of many pulses, the current pulse travels between the 

electrodes in a random arc, as defined by a path, l + dl, along an arc with diameter d.  The 

minimum possible path length is equal to l, the distance between the electrodes.  The arc 

diameter is surmised to be influenced by random air impurities including dust and 

humidity and the current level of air ionization. 

The arc diameter was observed  to rise and fall with the varying current magnitude 

over the course of a single pulse. It is qualitatively observed to be influenced by local 

plasma heating and electrode separation.  First, when many discharges are rapidly released, 

local plasma heating is observed to be sufficient to induce further ionizations which are 

sufficient to enable visual detection of an enlargement in d.  Secondly, over the course of 

many VDG discharge observations, d was observed to be inversely related to l; although it 

was not directly measured.  In all cases, l was directly measured and recorded. 

Flash lamp Theory Model   
The flash lamp model was first developed and applied in support of laser 

technology (Markiewicz, pp. 707-711) and will now be applied to the VDG conceptualized 

in Figure 11.  The VDG capacitor is fully charged at Vo just prior to air breakdown which 

is conceptually equivalent to switch, S, closure. 
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Figure 11.  Simplified circuit representation of the experimental VDG circuit.  
(Paul, C., p. 182) 

Flash lamp theory predicts an initially rising i(t) and V(t) and a falling R(t). The air 

constant of proportionality, k, distance between electrodes, l, and arc diameter, d, are 

constants for a flash lamp.  The theoretical V(t) and R(t) are shown in Equation Set (16). 

 𝑅𝑅(𝑡𝑡) = 𝑘𝑘𝑙𝑙
𝑑𝑑�𝑖𝑖(𝑡𝑡)� = 𝐾𝐾𝑜𝑜

�𝑖𝑖(𝑡𝑡)�  

𝐾𝐾𝑜𝑜 = 𝑘𝑘𝑙𝑙
𝑑𝑑�  

(16) 

 

Similar to other circuits, the frequency, period and damping for the VDG circuit 

also depend on C, R, and L. Similarly, the maximum circuit Vo and Eo depend on assumed 

constants which are ultimately functions of circuit geometry, and materials. 

The proportionality constants, Ko, k, both have units of Volts-amp1/2 and k depends 

purely on gas type and pressure without regard to any geometry.  The proportionality 

constant is normally provided by the flash lamp manufacturer.  For air at one atmosphere, 

such as is applicable to this research, k is arbitrarily taken as unity.  Earlier research with 
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flash lamps found Ko experimentally by repeatedly measuring the voltage and current over 

many discharges. 

VDG Theory Background 
Unfortunately, the VDG and flash lamp theories diverge because neither the VDG 

arc diameter d, and hence path length are constrained.  The VDG open arc discharge makes 

specifying a constant Z impossible. These parameters are inter-related, such that they 

cannot be resolved independently and further impacting precise knowledge of C, R and L.  

Furthermore the VDG arc varies stochastically from shot-to-shot even when the electrode 

locations remain fixed.  This variability is assumed to be a result of local stochastic 

environmental variability in conditions including random air impurities, humidity, 

temperature and the current level of air ionization. 

Upon VDG discharge through a gaseous medium, i(t) and d(t) initially rise to a 

maximum and then fall back to zero; R(t) must thus be opposite.  For a flash lamp, d is 

necessarily bounded, but not for the VDG. 

The flash lamp model differential equation with constant coefficients is shown in 

Equation (17).  The square root term makes the differential equations non-linear.  The flash 

lamp bore tube imposes an upper limit on the maximum arc diameter. 

 𝑉𝑉𝑜𝑜(𝑡𝑡) = 𝜔𝜔
𝑑𝑑𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝐾𝐾𝑜𝑜�𝑖𝑖(𝑡𝑡) +
1
𝐶𝐶
� 𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0
 (17) 

Beginning with Equation (17), several steps are taken to determine whether the 

circuit is overdamped, critically damped, or underdamped.  First, using Vo as per Equation 

(18), 
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 1 =  
𝜔𝜔(𝑡𝑡)
𝑉𝑉𝑜𝑜

𝑑𝑑𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

 +
𝑘𝑘
𝑉𝑉𝑜𝑜
𝑙𝑙�𝑖𝑖(𝑡𝑡)
𝑑𝑑(𝑡𝑡)

 +
1
𝐶𝐶𝑉𝑉𝑜𝑜

� 𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0
; 

(18) 

substitutions are made as detailed in Equation Set (19). 

 
𝑍𝑍𝑜𝑜 = �𝜔𝜔

𝐶𝐶
    

𝑖𝑖 = 𝐼𝐼
𝑉𝑉𝑜𝑜
𝑍𝑍𝑜𝑜

 

  𝜏𝜏 = 𝑡𝑡 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀�    

𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀 = √𝜔𝜔𝐶𝐶 

𝛼𝛼 =
𝑘𝑘𝑙𝑙

𝑑𝑑�𝑉𝑉𝑜𝑜𝑍𝑍𝑜𝑜
 

 

(19) 

The time constant, 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀, is the waveform full width duration at half the 

maximum amplitude and α is the model damping constant  The culminating flash lamp 

model differential equation is then as shown in Equation (20). 

 1=  𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏

+ 𝛼𝛼�𝐼𝐼(𝜏𝜏) + ∫ 𝐼𝐼 𝑑𝑑𝜏𝜏𝜏𝜏
0  (20) 

In Equation (20), all of the variables, I, τ and α are dimensionless.  As per Equation 

Set (19), α is an inverse function of �𝑉𝑉𝑜𝑜 where Vo corresponds to the breakdown of air.  If 

Vo were increased, α would decrease and the circuit would tend toward underdamped 

oscillatory ringing.  Conversely, if Vo were decreased, α would increase and the circuit 

would tend toward overdamping.  Earlier research (Markiewicz, p. 708) developed the 
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damping classification limits in Table 2 using numerical methods.  A conceptual waveform 

associated with each classification is illustrated in Figure 12. 

Table 2.  Flash lamp damping classification α limits (Markiewicz, p. 708). 

Overdamped 2.0 ≦ 𝛼𝛼 ≦ 3. 
Critically Damped 0.8 < 𝛼𝛼 < 2.0 

Underdamped 0.2 ≦ 𝛼𝛼 ≦ 0.8 

 

 

Figure 12.  Conceptual i(t) graphs correspond to the three damping classifications. 

 

Figure 13 shows a graphical, conceptual current-to-resistance inverse relationship 

in a flash lamp gaseous medium.  Upon attaining breakdown potential, the gaseous 

medium ionizes; resistance falls and current rises.  Both are shown to flatten out when the 

current diameter reaches the maximum allowable diameter as physically constrained by the 

bore tube. 



22 

 

 

Figure 13.  Conceptual flash lamp current-to-resistance inverse relationship. 

Since the energy initially stored in a capacitor, Eo, is 1
2
𝐶𝐶𝑉𝑉𝑜𝑜2, flash lamp theory and 

algebraic manipulations of Equation Set (19) may be used further to derive an expression 

for flash lamp C as shown in Equation (21). (Markiewicz, pp. 707-708) (Dishington, Hook, 

& Hilberg, pp. 2301-2308) 

   𝐶𝐶 = �2𝐸𝐸𝑜𝑜𝛼𝛼4𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
2

𝐾𝐾𝑜𝑜4
3

= �2𝐸𝐸𝑜𝑜𝛼𝛼4𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
2 𝑑𝑑4

𝑘𝑘4𝐻𝐻4
3

 
(21) 
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III. Methodology 

Experimental Procedure 
The experimental procedure called for continuously lifting charge from ground 

onto the VDG to raise potential as per ∆V(t)= ∆q(t) / C.  As the electric field between the 

electrodes approaches the dielectric strength of air, the oxygen and nitrogen molecules 

began ionizing.  Once initiated, the process rapidly cascades as an avalanche and forms a 

plasma bridge.  A rapidly rising i(t) arcs between the electrodes.  The arcing emanates 

EEMP(t) and B(t) fields outwardly. Sensors were in place to capture and record the 

waveform data generated from each discharge for analysis.  

Sensors and Measurement Equipment 
A conceptual illustration of each sensing instrument is shown in Figure 14. Some 

important details are again emphasized here. 

  

Figure 14. CVR and D-dot experimental setup profile diagrams both shown as recording to an oscilloscope 
labled #2 on the right.  The signal from each of the sensing devices is carried from the device to the 

oscilloscope via an RG62 BNC cable where its waveform was temporally recorded for later analysis. 
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The D-dot sensor was the initially considered the preferred data collection sensing 

device since it directly senses the EEMP(t) field.  The process calls for charge to be 

gradually built on the VDG until the potential between the VDG and the strike globe 

reaches the dielectric strength of air.  With the next additional charge, the air rapidly 

ionizes and an EEMP(t) propagates orthogonally out from the line of plasma to the D-dot 

sensor as illustrated in Figure 7 and Figure 14.  The propagating EEMP(t) field deposits 

charge onto the D-dot sensor which gets collected and is transmitted to ground.  The 

results are recorded on an oscilloscope. The Results section indicates un-anticipated and 

interfering reflecting electromagnetic signals which were superimposed on the D-dot signal 

and which rendered the data un-useable. 

The CVR is a device for measuring current with a known constant resistor placed 

in series with the ground line. It was placed as close as possible to the strike globe.  Since 

it does not directly sense the EEMP(t) through like the D-dot sensor, it is unaffected by 

either the direct or the reflecting EM signals.  The ground line discharge voltage across the 

CVR was recorded at the oscilloscope and was relied upon for all consequential data 

collection. The VCVR(t) was converted to ic(t) via Ohm’s Law and the ic(t) was used to 

calculate the EEMP(t) using Equation (6).  The EEMP(t) was fit to the standard model 

equation shown in (1) and compared to the Military Standard 464 waveform shown in 

Figure 3. Equipment used is listed in Table 3  
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Table 3. Equipment List 

Van de Graaff Generator (VDG) Built at AFRL    

Oscilloscope Tektronix TDS 5104B 

D-dot Sensor Prodyn AD-40E(R)  SN 95   
D-dot Sensor BALUN Prodyn BIB-105D  SN 132 
Current Viewing Resistor 0.02487 Ω  T & M Research Products. 

SERIES SDN-414 
Current Viewing Resistor 0.02487 Ω  T & M Research Products. 

SERIES SDN-414 
Power Supply No Manufacturer or Model Listed        

ID No.: C845588   S.N. N225035-
01CJ090204 

Power Switch General Electric Fuji AF-300 Mini  
Model NEMA 1XCID     S.N.: 
7BZ471A0008 

Cable RG62A/U 
Cable Terminators 93 Ω Shunt 
Multimeter Fluke 287 True RMS Multimeter 
Barometer Nimbus Digital Barometer  SN 

B6C8F2N01 
Thermometer / Humidistat Inmac 
Ground Strike Point Improvised Equipment; 30” (0.76 

m) diam foil covered stability ball.  
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IV. Results and Analysis 

Initial Equipment Familiarization 
As evident in Figure 15 and Figure 16 the initial waveforms were highly 

oscillatory, with widely ranging amplitude of ringing. None of the pulses waveforms were 

observed in the expected shape of a single pulse. None of these oscillatory wave forms 

were used in support of research conclusions. 

 

Figure 15.  Typical discharge waveform recorded across the CVR connected in series with the braided copper 
cable ground line.  The V(t) signal is carried to the oscilloscope on a 12” long RG62 BNC cable.  Electrode 

separation is 9”. 

-2

-1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

O
ut

pu
t (

V
) 

Time, t (microseconds) 



27 

 

 

Figure 16. Typical discharge waveform recorded across the CVR connected in series with the braided copper 
cable ground line.  The V(t) signal is carried to the oscilloscope on a 12” long RG62 BNC cable.  Electrode 

separation is 9”. 

In addition to the highly oscillatory character of the waveforms, there were several 

other initial observations.  Following each VDG discharge, the oscilloscope’s keyboard 

and mouse were disrupted and had to be disconnected and reconnected to regain function.  

As evident in Figure 1, the discharge path was random. The only circuit parameter that 

could be controlled for each shot was the distance between electrodes, l. Vmax varied 

inversely with l as did the arc diameter, d.  The Vmax was observed using an oscilloscope. 

The d was made initially by visually observing the arc, and approximated using equation 

(23). 

The data collection process was paused in order to consider the issues. The ringing 

was speculatively theorized to be caused by radiation reflecting off the laboratory structure 

and/or an impedance mismatch at circuit interfaces such as that between the VDG and the 
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ground strike globe. The wide ranging variability in the amplitude was speculatively 

theorized to be caused by the continually changing local conditions in the air. 

Non-Reproducible Waveform Improvement 
In order to reduce signal oscillations, the braided copper ground transmission loop 

was replaced with 1½” wide smooth aluminum tape.  The tape was insulated over the floor 

with four thicknesses of plastic trash bags.  The tape was smoother and offered greater 

surface area and therefore less resistance than the braided cables.  The mutual inductance 

was minimized because the transmission and return cables are in close proximity, but the 

current in the two cables flow in opposite directions so that their B fields oppose each 

other.  The mutual capacitance is desirably minimized in that only the tape edges (least 

dimension) were facing each other.  The transmission loop tape is visible in the 

experimental layout in Figure 17.  



29 

 

 

Figure 17.  Layout with smooth aluminum tape ground loop connected to the ground strike globe. The CVR 
terminals were secured in series with the ground loop.  The oscilloscope remained set just outside of the 

metal door threshold in line with the discharge arc axis approximately 25 ft from the center of the discharge 
arc. 

The first five discharges successfully generated tail pulses with very little 

interference or ringing.  Three of the five were fully recorded and fit to the tail pulse 

discharge model equation, 𝑖𝑖(𝑡𝑡) = 𝑖𝑖𝑜𝑜(𝑒𝑒−𝛼𝛼𝑡𝑡 − 𝑒𝑒−𝛽𝛽𝑡𝑡) in Table 5. Unanticipated arcing was 

observed penetrating the insulation where the ground loop crossed the door threshold steel. 

The insulation at the door threshold was therefore increased.  After increasing the 

insulation, the arcing ended and the highly oscillatory waveforms returned.  Efforts to 

restore conditions to generate additional data with only minimal ringing were not 

successful. The set up with the additional insulation over the metal threshold is shown in 

Figure 18. 
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Figure 18.  Laboratory layout with smooth aluminum tape ground loop connected to the ground strike globe 

which additionally highlights the extra insulation at the metal door threshold. 

A summary of 13 discharge events which includes 5 with minimally oscillating 

pulses followed by 8 with heavily oscillating pulses is shown in Table 4.  Notably, the 

average peak-to-peak voltage for the first five minimally oscillating pulses is 5.1 V which 

is 38% greater than the 3.7 V average for all 13 pulses.  The first five pulses subjectively 

take the form of a tail pulse.  As an extension of Table 4, additional summary data 

pertaining to the three minimally oscillating pulses which were also fully recorded as 

points is shown in Table 5.  A representative sample plot of a minimally oscillating pulse is 

shown in Figure 19. A representative sample plot of a later pulse after the resumption of 

heavy oscillations is shown in Figure 20. 

 



31 

 

Table 4.  The first five recorded discharges were minimally oscillating, but were not reproducible. The 
electrode separation distance was set to 5” for all discharges. 

11-May-
11 

Discharge 
Time 

Min Max Peak-to-
peak 

Tail 
Pulse 

Tail 
Pulse 
Point 
Data 

Note 

No. 24 Hr time volts volts volts Yes/No Yes/No   
1 1317 -0.1 5.1 5.2 Yes No 1 
2 1321 -0.1 5.1 5.2 Yes Yes 1,3 
3 1329 -0.1 5.1 5.2 Yes Yes 1,3 
4 1330 -0.1 4.8 4.9 Yes Yes 1,3 
5 1332 -0.1 4.8 4.9 Yes No 1 
6 1353 -3.5 5.1 8.6 No No 2 
7 1420 -0.9 1.7 2.6 No No  
8 1423 -0.7 1.3 2.0 No No  
9 1451 -0.8 1.5 2.3 No No  
10 1454 -0.7 1.2 1.9 No No  
11 1459 -0.7 1.6 2.3 No No  
12 1504 -0.5 1 1.5 No No 2 
13 1509 -0.9 3.5 4.4 No No  

Average -0.5 3.2 3.7    
Standard Deviation 0.4 1.8 1.5    
95% 

Confid. 
Lower -0.7 2 2.7    
Upper -0.2 4.4 4.7    

Note  1: Ringing minimized. 
Note 2: Excluded highest and lowest peak-to-peak values from statistical calculations. 
Note 2: Fit data to standard equation. 
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Table 5. Extension of Table 4: The non-reproducible minimally oscillating data captured as points is further 
processed to a fit model current equation. 

 
11-May-11 

Discharge 
Time 

 
Actual ipk 

 
Fit ipk 

 
Model Fit Parameters 

NO: [sec] [amp] [amp] i0 [amp] α [sec-1] β [sec-1] R2 

2 1321 205.9 139.6 190.4 2.18x106 2.64x107 0.92 
3 1329 205.9 127.2 147.5 1.12x106 3.46x107 0.91 
4 1330 194.6 120.5 188.8 2.83x106 2.14x107 0.91 

Average 202.1 129.1 175.6 2.04x106 2.75x107 0.92 
Standard Deviation 6.5 9.7 24.3 8.60x105 6.63x106 1x10-2 
95% 

Confid. 
Lower 190.2 111.2 115.1 4.18x106 4.39x107 0.89 
Upper 214.1 147 236 9.31x104 1.10x107 0.93 

MILSTD 
464     4.00x107 6.00x108  

 

 

Figure 19.  Sample non-reproducible actual and fit ground line current waveform comparison are shown. The 
waveform corresponds to discharge #3 of Table 4.  See  

Table 4 for additional information. 
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Fit i(t) = 147.51(exp(-1.12x106 t ) – exp(-3.46x107 t)),   
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Fit Equation, tpk = 0.104 microsec;  
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Legend: _____________   Actual i(t) 
-------------        Fit i(t) 
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Figure 20.  Discharge waveform #7 of Table 4 which followed the resumption of heavy ringing.  See Table 4 

for additional information. 

The 50 kV/m Military Standard 464 EEMP  requirement and the maximum ground 

line current are taken as inputs in the process outlined in Equation Set (22) for finding the 

maximum radial distance, rmax, from the current where the 50 kV/m intensity is attainable. 

The assumption of equating the current through the air to that of the ground line, will be 

treated later. For comparison, the normalized experimental EEMP(rmax,t) waveform is 

plotted together with the standard in Figure 21. 

 𝑖𝑖𝑔𝑔𝜋𝜋𝑜𝑜𝑔𝑔𝑀𝑀𝑑𝑑,𝑒𝑒𝐻𝐻𝑚𝑚(𝑡𝑡𝑒𝑒𝐻𝐻𝑚𝑚 = 100 𝑛𝑛𝑠𝑠) = 140 𝐴𝐴 

�𝐵𝐵 ∙ 𝑑𝑑𝑠𝑠 =
1
𝑐𝑐
�𝐸𝐸 ∙ 𝑑𝑑𝑠𝑠 = �𝜀𝜀𝑜𝑜𝜇𝜇𝑜𝑜 × 𝐸𝐸 × 2𝜋𝜋𝑟𝑟 = 𝑖𝑖𝜇𝜇𝑜𝑜 

𝑟𝑟𝑒𝑒𝐻𝐻𝑚𝑚 =
𝑖𝑖

2𝜋𝜋𝐸𝐸 �
𝜇𝜇𝑜𝑜
𝜀𝜀𝑜𝑜

    →    𝑟𝑟𝑒𝑒𝐻𝐻𝑚𝑚 = 17 𝑐𝑐𝑚𝑚 
(22) 
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Figure 21.  Comparison of the Military Standard 464 waveform with the average normalized EEMP(t) field 
based on the Table 5 average value data. 

D-dot Sensor Utilization 
Data collection with the D-dot sensor alone was attempted.  All discharges 

recorded with the D-dot sensor exhibited a strong signal oscillation (ringing). No D-dot 

sensor waveform generated anything subjectively resembling a tail pulse or a tail pulse 

envelope.  The D-dot sensor was placed 56” directly below the center of the arc and 

pointed straight up and orthogonally to the center of the arc. At any dimension less than 

56” the VDG discharge went into the sensor rather than into the intended strike globe.  

Utilizing the 56” minimum dimension maximized the effect of the primary incident EMP 

field as opposed to the effects of reflecting and other interfering radiation.  A 

representative sample plot is shown in Figure 22 and an initial setup with the D-dot sensor 

is as shown in Figure 23. 
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Normalized Experimental Fit Data:  
E(t) = 3.07x107(exp(-2.04x106 t) – exp(-2.75x107 t))   

Time to Peak, t100-0 = 0.10 microsec.   
Pulse Width, tFWHM = 0.46 microsec. 

 

_____________    Mil Std 464 EEMP..... 
-------------            Actual EEMP ...  
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Figure 22.  An initial typical D-dot sensor output V(t) discharge is shown.  

 

Figure 23.  The initial D-dot sensor layout includes the electrode separation distance set at 5” with the sensor 
set 56” orthogonally below the center of the discharge arc. 

Two modifications were made in an effort to reduce ringing.  Neither produced the 

desired effect.  The first modification was to apply aluminum tape shielding to the RG62 

BNC transmission line to the oscilloscope.  A representative waveform plot is shown in 
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Figure 24.  Without removing the line shielding, the second modification was to move the 

D-dot sensor 75” vertically below and 180” horizontally offset at the intersection of a 

laboratory wall and floor.  The sensor area vector remained orthogonal to the discharge arc 

axis.  A representative waveform plot is shown in Figure 25.  A laboratory setup while 

using the D-dot sensor, but after implementing the two modifications is shown in 

Figure 26. 

 

Figure 24.  A typical D-dot sensor output V(t) discharge is shown after applying shielding to the RG62 BNC 
transmission line.  The electrode separation distance remains set at 5”.  The  D-dot sensor location remains 

set at 56” orthogonally below the center of the discharge arc. 
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Figure 25.  A typical D-dot sensor output V(t) discharge is shown after applying shielding to the RG62 BNC 
transmission line and moving the D-dot sensor to be 75” vertically below and 180” horizontally offset at the 

intersection of a laboratory wall and floor.  The electrode separation distance remains set at 5”. 
 

 

Figure 26.  The layout is shown after applying shielding to the RG62 BNC transmission line and moving the 
D-dot sensor to 75” vertically below and 180” horizontally offset at the intersection of the laboratory wall 

and floor.  The D-dot sensor area vector remains orthogonal to the discharging arc. 

Due to excessive interference, none of the data collected using the D-dot sensor were used 

in support of research conclusions. 
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Capacitance Matching Data Collection 
The next modification was to replace the 17” diameter strike globe with a 30” 

diameter strike globe whose capacitance in isolation was calculated to be equal to that of 

the VDG. The replacement strike globe was improvised from a rubber ball covered with 

aluminum foil. 

The discharge from the VDG to the original 17” ground strike globe was modeled 

as though it were a fast pulsing signal carried on a cable having a small characteristic 

impedance connected to an electronic component having a high input impedance.  In such 

cases, the cable pulse senses the device input impedance as its effective termination 

impedance.  In fast pulse situations where the cable characteristic impedance is much 

smaller than the termination impedance, a part of the pulse signal will reverse its direction 

of transit and reflect back into the cable. The fast pulse reflections may be avoided by 

modifying the cable termination at the receiving electronic component in order to make the 

cable characteristic impedance nearly equal to the termination impedance.  To lower a 

cable’s termination impedance, a shunt resistor equal to the cable characteristic impedance 

is connected between the cable inner conductor and its outer shell.  The resulting effective 

termination impedance is then lowered and is equal to the parallel combination of the shunt 

resistor and the receiving component input impedance. (Knoll, Ch 16) 

As per Figure 11 and the capacitance calculations and measurements in Table 6 the 

VDG and the 17” strike globe are both predominantly capacitively coupled, but un-equal, 

circuit elements. As per Equation (13) and Equation (15), the factors which affect Z 

include, R, C, L and ω. Therefore, the only circuit modification which stood out as being 

both achievable and desirable was to improve Z matching by C matching the VDG and the 
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ground strike globe.  A multimeter was used to measure the system capacitance at the 

VDG of the differing experimental configurations. 

Table 6. The calculated component capacitances and measured system capacitance values are tabulated.  Five 
minimally oscillating, but non-reproducible pulses were generated prior to making circuit improvements to Z 

and C. 

 

 

Reproducible Tail Pulse 
In addition to capacitance matching as previously described, several other circuit 

modifications were enacted in order to achieve the optimal configuration for generating 

reproducible tail pulses with greatly reduced ringing.  The CVR input terminal was 

connected directly and immediately to the ground strike globe. The CVR output terminal 

was connected to a braided copper ground line cable. The CVR signal transmission cable 

to the oscilloscope was raised above the floor. The CVR signal was transmitted to the 

oscilloscope with a 25 foot shielded RG62 BNC cable and was terminated at the 

oscilloscope with a 93Ω shunt resistor. 

The optimal configuration was in place to first generate five pulses with data 

collection only through the CVR.  The next seven data collection discharges were 

VDG Dome, 
CVDG

Original 17” 
Diameter Strike 

Globe

Replacement 
30” Diameter 
Strike Globe

Case
Strike 
Globe 
Diam

Electrode 
Separation 
Distance, 

‘l ’

Measured 
System 

Capacitance

pF pF pF pF
Non-

reproducible  
(Section 4.2)

17" 5” 436

Reproducible    
(Section 4.5) 30" 15” 143

42

Capacitance Summary

Calculated Component Capacitance Varying Conditions;
Measured System Capacitance

42 24
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accomplished with concurrent use of both the CVR and the D-dot sensor for a total of 12 

data collection discharges.  All 12 collections generated through the CVR are summarized 

in Table 7 and Figure 28. Figure 27 shows a reproducible sample waveform together with 

its fit waveform.  Qualitatively, none of the D-dot generated waveforms and none of the D-

dot generated waveform envelopes were observed to be in the expected shape of a tail 

pulse. 
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Table 7.  Reproducible CVR generated data with minimal ringing is tabulated.  

 

 

16 May
No. Time io (amp) α (sec-1) β (sec-1) R2 Note

1 1505 62.5 49.6 15” 113917 -1.4053×107 -1.4070 ×107 0.70 1
2 1529 39 35.8 15” 113579 -1.4056 ×107 -1.4068 ×107 0.38 1
3 1536 46.9 43.5 15” 113716 -1.4054 ×107 -1.4069 ×107 0.69 1
4 1540 13.4 11.6 20” 113028 -1.4060 ×107 -1.4064 ×107 0.91 1, 3
5 1547 20.9 20.2 10” 113079 -1.4058 ×107 -1.4065 ×107 0.33 1,3
6 1728 27.5 13.7 15” 113008 -1.4067 ×107 -1.4072 ×107 0.66 2, 4
7 1732 22.2 12.5 15” 113000 -1.4071 ×107 -1.4075 ×107 0.78 2, 4
8 1742 18.4 12.5 15” 113001 -1.4400 ×107 -1.4404 ×107 0.77 2, 4
9 1750 16.6 11.2 15” 112993 -1.4414 ×107 -1.4418 ×107 0.86 2, 5
10 1755 24.7 14.1 15” 113010 -1.4416 ×107 -1.4421 ×107 0.71 2, 5
11 1803 16.2 11.2 15” 112989 -1.4435 ×107 -1.4439 ×107 0.86 2, 6
12 1807 22.8 13.2 15” 113001 -1.4436 ×107 -1.4441 ×107 0.78 2, 6
Avg 29.7 21.7 113221 -1.4240 ×107 -1.4248 ×107 0.72

Std Dev 15.2 15 365 1.9017 ×105 1.8689 ×105 0.14

Lower 18.8 11 112960 -1.4376 ×107 -1.4381 ×107 0.62

Upper 40.5 32.5 113482 -1.4104 ×107 -1.4114 ×107 0.82

1

2

3

4

5

6

D-dot sensor orthogonal displacement from arc: 7ft-2” vertically below and 7ft-0 horizontally.

D-dot sensor orthogonal displacement from arc: 4ft-8 directly below.
D-dot sensor was in line with the VDG & Strike Globe Axis & displaced 7ft-2” vertically 
below and 9ft-3” horizontally from the strike globe.

Model Fit Eqn.: i(t) = io(eαt-eβt)Actual 
imax (amp)

Fit imax 

(amp)

Electrode 
Separation 
Distance

95% 
Confid 
Interval

N
ot

es
:

CVR recorded output; No D-dot recording 

CVR and D-dot recorded output concurrently. 
Excluded from table bottom summary statistics due to the difference in electrode separation 
distance.



42 

 

 

Figure 27.  A sample reproducible actual and fit ground line current waveform comparison 
is shown. The waveform corresponds to discharge #11 of Table 7.  See Table 7 notes for a 
description of conditions. 

 

 

Figure 28. Comparison of the Military Standard 464 waveform with that of the average 
normalized EEMP(t) field based on the Table 7 data. 
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The CVR connections near the ground strike globe are shown in Figure 29.  The 

shielded RG62 BNC coaxial cable is highlighted in Figure 30. 

 

Figure 29.  The CVR input and output terminals connect to the strike globe and the ground 
line respectively.  The CVR signal is transmitted on a 25 ft shielded RG62 BNC cable.  
This configuration was in use while collecting the Table 7 data. 
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Figure 30.  The CVR signal is transmitted on a 25 ft shielded RG62 BNC cable and 
displayed on an oscilloscope.  The aluminum tape visible on the floor is disconnected and 
cast aside.  This configuration was in use while collecting the Table 7 data. 

A representative sample waveform taken simultaneously through the D-dot and 

CVR sensors is shown as a screen shot in Figure 31.  The Figure 31 CVR screen shot 

waveform is the same one as shown in Figure 27.  Similar to the CVR signal transmission, 

the D-dot sensor signal transmission to the oscilloscope was also accomplished with a 

shielded RG62 BNC cable and it was also terminated at oscilloscope with a 93 Ω shunt 

resistor. 
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Figure 31.  Oscilloscope screen shot of simultaneous, D-dot and CVR voltage waveforms. 
The CVR generated tail pulse output (in yellow) is above the time axis.  The D-dot sensor 
output (in blue) is on both sides of the time axis.  The waveform corresponds to discharge 
#11 of Table 7.  See Table 7 notes for additional information. 
 

As part of the effort to generate a smooth tail pulse without ringing, the D-dot 

sensor was relocated to several trial locations.  Each location is described in the Table 7 

notes.  One of the trial locations is shown in Figure 32. 
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Figure 32.  A trial layout listed in Table 7 in which the D-dot sensor and CVR are used 
concurrently is shown.  The D-dot sensor is situated 56” directly below the center of the 
arc.  The CVR is hanging on the left side below the strike globe.  The shielded RG62 BNC 
signal tranmission lines for both collection devices are also visible. 
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Summary Comparison of Useable Data 

The useable experimental data is summarized in Table 8. All of the useable data 

was generated using a known, constant 0.02487 Ω resistance CVR from which each 

discharge voltage was recorded as a function of time on an oscilloscope.  The initial 

system voltage is theoretically known.  The two experimental parameters that were 

measured independently of the arc were distance between electrodes, l, and spark gap 

capacitance, C.  The maximum effective route diameter (assumed an arc) d, was 

theoretically approximated with the reproducible data as in Equation (); all parameters are 

listed in parameters are listed in Table 8.  

 k = 1 =
Ko,non−repro𝑑𝑑non−repro

𝑙𝑙non−repro
=

Ko,repro𝑑𝑑repro
𝑙𝑙repro

 
(23) 

The effective d listed in Table 8 is much smaller than that which is qualitatively 

observed from photographs.  The observed appearance of a larger d is surmised to be due 

to heating of the air sufficient to induce visible radiation which expands laterally outward 

from the current carrying path, thereby misrepresenting d. 
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Table 8.  Summary & comparison of observations, data, assumptions & calculations.  

 

Case
No. of 

Discharges as 
Data Points

Electrode 
Separation 
Distance

Theoretical 
Break Down 

Potential
Temp

Relative 
Humidity

l V o

no. inches kV Kelvin H rel

Non-Reproducible 3 5 390 295.5 98%
Reproducible 10 15 1140 292.7 74%

Case
Fit Peak 

Conduction 
Current 

Assumed 
Crit 

Damping 
Factor 

i c,max α
amps unitless

Non-Reproducible 129 1.4
Reproducible 22 1.4

Case

Assumed 
Flashlamp Air 
Constant of 

Proportionality

Route 
Diameter

Measured 
Rise Time      

(0 to 100%)

Predicted Flash 
Lamp Time 
Const OR

 Measured 
Capacitance

d = kl / K o Fit Pulse Width

k d  t 100-0 t FWHM(2-1) C
Volts-amp1/2 microns nanosec nanosec pF

Non-Reproducible 1 4.6 100 460 436
Reproducible 1 7.3 70 172 143

Case
Air 

Impedance

Z o  = √(L/C)
Z o

Ω
Non-Reproducible 90

Reproducible 277
28398
51841

L Air  =2l [Ln(4l/d )-0.75]μ o

172

Flashlamp Theoretical Air 
Constant of Proportionality

K o  = α√(V o t FWHM(2-1) /C)
Ko

Volts-amp1/2

Displacement Current                                                         
i d  = ε o  (1/t 100-0  ) (V o /l ) (π(d VDG ) 2/4)  

i d

amps
123

Air Inductance

L Air

μH
3.6
11

𝑍𝑍𝑜𝑜 = 𝜔𝜔/𝐶𝐶𝐾𝐾𝑜𝑜 = 𝛼𝛼 𝑉𝑉𝑜𝑜𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀(2−1)/𝐶𝐶
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The previous experimental conditions associated with the non-reproducible data 

differed from the later experimental conditions associated with the reproducible data. From 

the experimental data, l increased by 200% while d increased by 60%.  This suggests that d 

is relatively insensitive to the experimental conditions and the application of flash lamp 

theory to the VDG circuit is approximately valid over a wide range of experimental 

conditions. 

In Figure 33 the reproducible and the non-reproducible average experimental fit i(t) 

pulses are compared on a single graph.  The non-reproducible i(t) took only 43% more 

time to increase 600%.  Such a result is unexpected and is not consistent with flash lamp 

theory including that of Equation (23).  Most importantly the reproducible data generated 

at with  l by 3 times is expected to generate the greater imax. Secondly, the evidence also 

does not support the concept that the non-reproducible i(t) exceeds that of the reproducible 

i(t) because of absolute humidity, Habs, effects. If all conditions were equal except that of 

Habs, then those discharges accomplished during periods of higher Habs are expected to 

generate a lesser i(t), because Habs contributes to charge leakage off of the VDG.  

According to Table 8, the reproducible discharges are accomplished in conditions of both 

lower relative humidity, Hrel, and lower temperature and therefore must necessarily also be 

accomplished in conditions of lower Habs. Therefore, based only on Habs the greater 

discharge is expected to correspond to the reproducible discharges. Therefore, with respect 

only to Habs the relative i(t) result in Figure 33 is not expected. 
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Figure 33.  The average reproducible and non-reproducible experimental fit currents are shown.  See Table 8 
for the details pertaining to the relative magnitudes of imax and t100-0.  Based on the greater l and lesser Habs 

associated with the reproducible case, the reproducible case is expected to generate a greater imax. 

Circuit Theory Analysis of Results 
As per the measurements of this research, the existing experimental apparatus will 

not generate a pulse with a t100-0 sufficiently rapid to comply with the Military Standard 

464 requirement.  The standard waveform subjects test specimens to a critically over-

damped electric field in which the field rises from 0 to 50,000 volts/meter in 5 ns (DOD 

Joint Committee, p. 59). It is, however, possible to gain insights as to how the circuit may 

be manipulated to more closely comply.  First, Equation Set (19) shows that 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀(2−1) 

equals √𝜔𝜔𝐶𝐶.  With further manipulations of the experimentally measured 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀(2−1), and 

the experimentally measured 𝑡𝑡100−0, another relationship is derived in Equation (24).  The 

𝑡𝑡100−0 is equal to some constant fraction, k1, of 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀(2−1). 

 𝑡𝑡100−0 = 𝑘𝑘1𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀(2−1) (24) 
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In order to better understand how to reduce the rise time, 𝑡𝑡100−0, down to 5 ns, its 

relationship to k and  𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀, as in Equation (23), were analyzed.  The 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀 may 

potentially be reduced by decreasing, l; decreasing C; or increasing Vo.  The initial energy 

storage equation, 𝐸𝐸𝑜𝑜 = 𝐶𝐶𝑉𝑉𝑜𝑜2

2
, and the flash lamp capacitance equation, 𝐶𝐶3 = 2𝐸𝐸𝑜𝑜𝛼𝛼4𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

2

𝐾𝐾𝑜𝑜4
, are 

manipulated in order to find an expression for 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀. 

 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀(2−1) =
𝐶𝐶𝑘𝑘2𝑙𝑙2

𝑉𝑉𝑜𝑜𝛼𝛼2𝑑𝑑2
 

(25) 

The assumed, average values used for plotting in Figure 34 through Figure 36 are 

𝐶𝐶 = 290 𝑝𝑝𝑝𝑝; 𝑘𝑘 = 1; 𝑙𝑙 = 10"; 𝑉𝑉𝑜𝑜 = 765 𝑘𝑘𝑉𝑉;  𝛼𝛼 = 1.4;𝑑𝑑 = 9 𝜇𝜇𝑚𝑚.  The α value falls within 

the critical damping range.  The l, C and Vo are varied sequentially in 34 through Figure 36 

individually to better understand their impact on 𝑡𝑡𝐹𝐹𝐹𝐹𝐻𝐻𝑀𝑀. 

 

Figure 34.  Only the independent l of Equation (27) is varied to see its predicted, direct, squared effect on the 
dependent tFWHM. 
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Figure 35.  Only the independent C of Equation (27) is varied to see its predicted linear, direct effect on the 
dependent tFWHM. 

Figure 36.  Only the independent Vo of Equation (27) is varied to see its predicted inverse relationship with 
the dependent tFWHM. 

  

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600Ti
m

e 
C

on
st

an
t, 

t F
W

H
M
, (

na
no

se
co

nd
s)

 

Capacitance, C, (pF) 

0

200

400

600

800

1000

1200

1400

100 300 500 700 900

Ti
m

e 
C

on
st

an
t, 

t F
W

H
M
, (

ns
) 

Discharge Potential, Vo, (kV)  



53 

 

Leading Edge Data Generation Analysis 
An analysis and comparison of the D-dot and CVR sensors were derived from the 

simultaneously employment of the two sensors on seven consecutive discharges.  The two 

sensors displayed significant differences in their waveforms.  As such, it is very difficult to 

compare the two data sets.  This was further complicated by large shot to shot variation in 

the arcing current.  In order to address this, the temporal characteristics of both sensors 

were analyzed over a range of timescales to identify the extent, if any, where the two 

sensors agreed.  Speculatively, the D-dot sensor appeared to be initially measuring direct 

radiated field and then after approximately 40 ns appeared to superimpose re-radiated 

reflections from varying laboratory surfaces. As such, the D-dot generated data stream 

which followed the arrival of the reflections was not useable.  Analysis of the D-dot 

generated data enabled investigators to estimate travel time and travel distances of the first 

reflections arriving at the sensor. An initial visual inspection of the oscilloscope screen 

shots over a one microsecond period did not indicate any correlation.  A closer inspection 

indicated that the CVR and D-dot sensors strongly correlate for a short period at their 

leading edge.  An exponential model function was assumed and fit to the leading edge data 

generated from both sensors. Leading edge data normalization was also analyzed to allow a 

direct visual comparison between the two sensors. 

The leading edge data generated simultaneously via the CVR and the D-dot sensors 

is now modeled as a rising exponential function and analyzed.  The analysis shows that the 

data simultaneously generated with both the CVR and D-dot sensors is nearly identical for 

the first 40 ns.  The rest of the CVR data beyond the first 40 ns is then assumed to 

accurately duplicate that which would have been generated with the D-dot sensor if a 
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laboratory free of reflecting interference were available.  This assumption is necessary 

since no useable D-dot data was generated for a full waveform and the D-dot sensor is 

what directly senses EEMP. 

The analysis here is derived from the last seven discharge events where data was 

recorded simultaneously with both a CVR and a D-dot sensor. The analysis begins by 

arbitrarily selecting the first of the seven discharge events as typical of all seven.  The first 

waveform is shown both as a screen shot in Figure 37 and as a point plot in Figure 38. An 

initial visual inspection over a long period such as one microsecond does not indicate any 

correlation.  Closer inspection indicates that the two sensors strongly correlate over some 

short period at their leading edge. 

Notice in Figure 37 and in Figure 38, coincidentally, that the data begin to deviate 

from the initial voltage offset value 40 ns prior or to the left of where zero time was 

initially intended.  This is the case for all of the data sets of each device.  Therefore 40 ns 

has been added to all of the time values for all seven discharges for both sensors. This 

trigger location correction effectively moves all of the data to the right and re-establishes a 

correlated zero time location.  The fact that both the trigger correction period and the 

correlation period are both 40 ns was not intentional. 
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Figure 37.  The first of seven similar screen shots is shown where the CVR and D-dot sensors record 
simultaneously and correlate with each other for the first 40 ns.  The CVR output is in yellow and is above 

the time axis.  The D-dot output is in blue and it on both sides of the time axis. 

 

 

Figure 38.  The first of seven similar discharge recordings is shown where the CVR and D-dot sensors record 
simultaneously and correlate with each other for the first 40 ns. 

Figure 39 re-establishes the trigger location 40 ns to the left and isolates the leading 
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shown in Equation (26).  The fit equation Vo and amplitude, A, values for both devices are 

found in Table 9.  The 𝑉𝑉𝑜𝑜 term is included to account for the voltage offset of both sensors.  

The exponential term is included since the rise is assumed exponential.  The ‘A’ 

coefficient is included to accommodate the amplitude variability and to maximize the 

goodness of fit. 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑜𝑜 + 𝐴𝐴𝑒𝑒𝑡𝑡 𝜏𝜏�  (26) 

 

Figure 39.  From Figure 38, the representative sample CVR discharge waveform is further isolated and is 
overlaid with its fit curve derived from Equation (28).  The fit curve equation coefficients are found  

in Table 9. 

Similarly, in Figure 40 the D-dot generated leading edge data is also further 

isolated and overlaid with the same initial, proposed fit equation.  It is additionally 

inverted.  The inversion was done in order to make viewing the D-dot data easier when 

comparing it with the CVR data. 
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Figure 40.  From Figure 38, the representative sample inverted D-dot discharge recording is further isolated 
and is overlaid with its fit curve derived from Equation (26).  The fit curve equation coefficients are  

found in Table 9. 

All seven discharge data sets for each sensor corresponding to the simultaneous use 

of both sensors were fit to the proposed Equation (28) for collection durations of 30, 40, 50 

and 60 ns. For each fitting, the goodness of fit, R2, was calculated. For each collection 

duration, the two average goodness of fit figures associated with each instrument were 

multiplied together, 𝑅𝑅𝐶𝐶𝑉𝑉𝐶𝐶2 × 𝑅𝑅𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡2 .  The optimal individual goodness of fit for each 

device as well as the product of the two is equal to unity. 

Also calculated for the four collection durations was the average 𝜏𝜏𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡 𝜏𝜏𝐶𝐶𝑉𝑉𝐶𝐶� .  If 

the two instruments were perfectly matched and if there were no unequal 𝑉𝑉𝑜𝑜 offsets to be 

accounted for, then the optimal τ ratio would be exactly equal to unity.  Whereas the 

voltage offsets are very small, the optimal 𝜏𝜏𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡 𝜏𝜏𝐶𝐶𝑉𝑉𝐶𝐶�  ratio is still assumed to be very 

close to unity.  The collection duration having the smallest time constant ratio standard 

deviation is also the most consistent. 

-0.04

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0 10 20 30 40 50

Vo
lts

, V
 

Time, t, nanosec 

Leading Edge Inverted D-dot Data 
 

---------------      Original Data Stream 
_____________                          Fit Data Stream 



58 

 

The proposed fit to Equation (28) of the data is tabulated in Table 9 for all seven 

discharges for each sensor and for the 30, 40, 50 and 60 ns collection durations.  The Table 

9 summary shows that the optimal duration for comparing the CVR and D-dot sensor data 

streams is the 40 ns duration.  As per Table 9 and Figure 41, the 40 ns duration is the 

duration at which the 𝜏𝜏𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡 𝜏𝜏𝐶𝐶𝑉𝑉𝐶𝐶�  ratio and the 𝑅𝑅𝐶𝐶𝑉𝑉𝐶𝐶2 × 𝑅𝑅𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡2  product are nearest to 

unity.  

Table 9.  The average values of the fit Equation (28) constants Vo, A and τ are shown for varying leading edge 
durations for both sensors.  The averages are taken over all seven discharges where both sensors were used 
simultaneously.  The analysis also shows the     τD-dot/τCVR ratio and the R2

D-dot × R2
CVR product for multiple 

durations.  Also shown are each of the sample standard deviations, σ. 
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Figure 41.  The R2
D-dot × R2

CVR product and the τD-dot/τCVR ratio are optimal when equal to unity and most 
nearly approximate unity at 40 ns. 

At or just beyond 40 ns, the D-dot sensor goodness-of-fit decreases due to assumed 

reflections off of laboratory surfaces.  As such, the distance to the nearest reflecting surface 

may be estimated.  The signal travels at the speed of light or approximately 1 ft/ns.  The 

round trip travel time is taken as 40 ns which makes the distance to the nearest re-radiating 

surface approximately 20 feet.  The actual measured distance from the arc to the nearest 

wall was 15 feet and the measured distance to the floor was 8 feet.  However, the path of 

the first reflection to cause waveform interference is not known. 

Beyond 50 ns, the CVR goodness of fit decreases due to the rolling over of the data 

and may no longer be modeled with a single exponential. Figure 42 graphically shows that 

for the 40 and 50 ns leading edge durations for each of the seven discharges summarized in 

Table 9, the CVR sensor output values exceed the D-dot sensor output values. The V(t) 

associated with the D-dot sensor varies directly with the arcing i(t) and inversely with the 
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squared orthogonal distance, r2, from the line of the arcing i(t).  The CVR sensor V(t) 

values vary directly only with the ground line i(t) (i. e. : 𝑉𝑉(𝑡𝑡)𝐶𝐶𝑉𝑉𝐶𝐶 ∝ 𝑖𝑖(𝑡𝑡)).  Significant 

variability between discharge events is also observed.  As previously theorized in Section 

2.8, the variability is likely the result of the un-controlled environmental conditions 

including random air impurities, humidity, and the level of air ionization.  

 
Figure 42.  Shown graphicially are the CVR and D-dot sensor fit function output levels for all seven 

discharges which make simultaneous use of the two sensors.  These are not the maximum output values.  
These are the output values at 40 and 50 ns after initiating discharge. 

In Figure 43, the average leading edge data is plotted using the model fit to 

Equation (28) for both sensors from 0 to the 40 ns, the optimal collection duration. 
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Figure 43.  The average leading edge data is plotted as per the model fit to Equation (27) for both sensors 
from 0 to the 40 ns optimal collection duration. 

Next, the data were normalized and the voltage offset, Vo, correction was 

eliminated.  The revised data was then mapped in Figure 47 to a scale from zero to one, 0 < 

V(t) ≤ 1 over 40 ns.  The new model equation is as shown in Equation (27).  Some small 

change in the τ value was required due to eliminating the voltage offset, Vo.  The revised fit 

equation for varying data collections durations with each collection device is shown in 

Table 10 and once again, as per Table 10 and Figure 44, the 40 ns duration is the duration 

at which the time constant ratio 𝜏𝜏𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡 𝜏𝜏𝐶𝐶𝑉𝑉𝐶𝐶�  and the goodness-of-fit product 𝑅𝑅𝐶𝐶𝑉𝑉𝐶𝐶2 ×

𝑅𝑅𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡2  are nearest to unity.  Dr Gary Cook assisted with specialized data processing 

software which was needed to adjust τ; compensate for eliminating Vo; and then generate 

Table 10. 

 0 < 𝑉𝑉(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑡𝑡 𝜏𝜏� ≤ 1 (27) 
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 Table 10.  Normalized revision of Table 9 

 

 

 

Figure 44.  The R2
D-dot × R2

CVR product and the τD-dot/τCVR ratio are optimal when equal to unity and most 
nearly approximate unity at 40 ns. 
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The Table 10 𝜏𝜏𝑉𝑉−𝑑𝑑𝑜𝑜𝑡𝑡/𝜏𝜏𝐶𝐶𝑉𝑉𝐶𝐶 ratio is nearest to unity at 40 ns which is taken as the 

time of maximum agreement between the two sensing devices.  Similarly, the combined 

goodness-of-fit product is nearest to unity at 40 ns.  The tabulated values at 40 ns for 

 τD-dot / τCVR and (R2)D-dot × (R2)CVR are 1.06 and 0.95 respectively.  Speculatively, at 

greater durations, the D-dot signal experiences interference from the reflected waves which 

does not significantly impact the CVR generated data. 

The coefficient A values for the normalized CVR and D-dot data sets are plotted in 

Figure 45.  Once again, 40 ns was the collection duration at which the A values for the two 

devices most nearly agree. 

 

Figure 45.  The normalized fit Equation (27) coefficient A values for both the CVR and D-dot devices are 
plotted together on one graph.  After rounding to the nearest 10 ns the coefficient A values most closely agree 

at the 40 ns collection duration. 
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Figure 46 shows a 40 ns leading edge graphical comparison of the average, 

normalized data for both collection devices over seven discharges and is followed by 

Figure 47 which makes the same comparison as fit functions.  The 40 ns collection 

duration is taken as optimal for comparing the two devices because it is at this duration 

where the CVR and D-dot parameter values of Equations (28) and (29) for prior to and 

following normalization most closely agree.  Although the two leading edge curves appear 

similar, in order to really determine whether the two devices are conveying the same 

information and only scaled differently, it is also necessary to know the time-to-peak and 

the peak output value for both devices.  In the case of the D-dot sensor, this information is 

not discernible due to interfering reflections. 

 
Figure 46.  The normalized average graph of the leading edge output is based on data from the seven 

discharges where the CVR and D-dot sensors were used simultaneously. 
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Figure 47.  The normalized average graph of the leading edge output is based on fit data from the seven 
discharges where the CVR and D-dot sensors were used simultaneously.  The data was fit to Equation (27). 
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V. Discussion and Conclusions 

Consistency with Flash lamp Theory 
The experimental results are generally consistent with the flash lamp theory 

predictions.  In practice, the only way to vary the system capacitance, C and maximum 

charge potential, Vo is to change the electrode spacing, l.  These parameters are related, 

through Equations (26) and (27), to the time-to peak parameter, t100-0; of direct interest in 

this research.  The only independent parameter, l, can be precisely established and it 

changes C and Vo.  The t100-0 is directly related to l2 and the system C and is inversely 

related Vo.  Changing l, C and Vo independently is not possible.  Selecting the optimal l 

may be done with incremental adjustments to find the best balance to produce a waveform 

to most nearly comply with that of the standard, as shown in this document. 

The VDG model is not entirely consistent with flash lamp theory in that d is 

theorized to decrease with increasing l, which was not observed.  This change, however, is 

relatively small; the ratio of the relative change: Δ𝑑𝑑 Δ𝑙𝑙 = −0.3⁄ . This suggests that d is 

relatively insensitive to the experimental conditions and that the application of flash lamp 

theory to the VDG circuit is approximately valid over a wide range of experimental 

conditions. 

Unexpected Results 
There are a couple of unexpected & notable observations that are apparent in 

comparing the non-reproducible and the reproducible useable data.  As per Figure 33 the 

non-reproducible fit imax of 132 A exceeded that of the reproducible fit imax of 22 A by a 

factor of 6.  The findings show that in the non-reproducible case a 16 times greater charge 

quantity took 2.7 times longer to move across a shorter l.  In the reproducible case, l=15” 
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and in the non-reproducible case, l=5”.  It is also unexpected & notable that the greater imax 

was generated during a time of greater absolute humidity, Habs. 

There are at least two possible reasons why the conditions of a smaller l and a 

higher Habs correspond to a larger imax.  First, the pre-existing dust density was neither 

measured nor controlled; it may have been sufficiently variable and sufficiently reduced 

such as to support the greater imax.  Secondly, the pre-existing air ionization level was 

neither measured nor controlled; it may have been sufficiently variable and sufficiently 

reduced such as to support the greater imax. Neither the dust density nor the air ionization 

level were monitored or controlled.  The air in the laboratory was not conditioned and in 

general the laboratory was very dusty and dirty. The exterior walls did not completely keep 

outside rain, dust and wind from entering the laboratory. 

Recommendations for Future Work 

Decreasing Rise Time With Additional VDGs 

If a future goal is to use the VDG for research and education specifically to 

demonstrate theory and test models then it will be desirable to generate a faster pulse with 

greater intensity.  It may be possible to augment the current VDG and employ it as the 

foundation of an improved capability.  The voltage built on any single VDG is limited by 

both its capacitance and by the dielectric strength of air.  In order to overcome existing 

equipment and air limitations, two concept proposals are offered. Both involve adding 

another VDG. 

The first is as illustrated in Figure 48 as Improvement Concept 1. The two VDGs 

charge together in parallel at the same rate with the same polarity charge. If conditions at 
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VDG 1 and VDG 2 are the same except for their proximity to ground, then VDG 1 which 

is closer to ground will discharge first. This sudden discharge from VDG 1 to ground will 

result also in a large and sudden rise in potential difference possibly instantaneously 

exceeding the air breakdown threshold between VDG 1 and VDG 2. If such is the case 

then VDG 2 will discharge across a minimal gap to VDG 1. The impedance between the 

two VDGs is lowered as the gap distance is decreased. The anticipated and desired end 

result is to decrease t100-0. 

 

Figure 48.  Plan View of Improvement Concept 1. 

The second concept proposal is to boost performance by adding a VDG in line as 

illustrated in Figure 49 and build charge on the VDGs together in parallel.  The maximal 

charge on VDG 1 must be sufficient to overcome the same polarity but minimal charge on 

VDG 2 and to discharge prior to VDG 2 and through VDG 2 prior to reaching ground. The 

initially small potential on VDG 2 adds to the ultimate potential but is not initially 

sufficiently large on its own to ionize the air. Following the discharge of VDG 1, the 

potential between VDG 2 and ground is theorized to possibly rise instantaneously to be 
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greater than the breakdown strength of air. Once again, the anticipated and desired end 

result is to decrease t100-0. 

 

Figure 49.  Plan View of Improvement Concept 2 

Permutations of the preceding improvement concept proposals are possible and 

both warrant further consideration. 

Equipment & Facility Improvements 

Future research projects will likely require that ringing be further reduced.  Future 

experiments will likely be required to better isolate the desired signal; produce smoother 

data; and decrease the shot-to-shot variability. 

A future project will likely further require the successful use of the D-dot sensor in 

order to directly analyze the emanating EEMP(t) rather than to rely on the ground line i(t) 

which is adversely affected by the ground line material Z.  Optimally, the arcing i(t) in the 

air and the i(t) in the ground line will be fully and independently measured and compared 

prior to assuming that they are nearly identical.  To this end, it is further recommended that 

a future experiment be executed in a non-reflecting outdoor location.  Such a change will 
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test the assumption that the waves being generated in the current experiment are being 

reflected off of the laboratory surfaces.  In addition to the D-dot sensor and the CVR, a 

magnetic field sensor and a current probe may also be added to a future design with results 

compared for additional verifications and to make the research more complete. 

A longer range and more optimal improvement will be to perform experiments in a 

non-reflecting indoor laboratory where the air may be monitored and conditioned.  

Speculatively, the randomness of the discharge path may be in part due to the 

environmental variability.  Future research will benefit from finding ways to standardize, 

straighten and increase the consistency of the discharge path to ground. 

Future research will also further benefit from considering the findings presented in 

Table 6 which shows that the measured C greatly exceeds the calculated C. The calculation 

did not consider that capacitances would be significantly increased due to presumed 

interactions with other components and with the laboratory facility.  Recommend that 

future research include additional consideration of the surrounding structure.  Recommend 

further that a multimeter be routinely available throughout the process to readily check 

capacitances, inductances, resistances and continuities. 
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APPENDIX A: Regression Performed To Fit Equations 

With each discharge, a voltage across the CVR was transmitted as a data point to 

the oscilloscope.  Approximately 1200 data points were typically recorded over a 2.4 

microsecond duration for each discharge.  Each point of voltage data was next divided by 

the calibrated CVR resistance value of 0.025 Ω to convert it to a current and all of the 

actual current values were summed, ∑ 𝑖𝑖𝑀𝑀
𝑀𝑀=1200
𝑀𝑀=1 .  Next, each current value was squared and 

then the squares were summed, ∑ 𝑖𝑖𝑀𝑀2
𝑀𝑀=1200
𝑀𝑀=1 .  For all 1200 time steps, the known model fit 

equation 𝑖𝑖𝑒𝑒𝑜𝑜𝑑𝑑𝑠𝑠𝐻𝐻(𝑡𝑡) = 𝑖𝑖𝑜𝑜(𝑒𝑒−𝐻𝐻𝑡𝑡 − 𝑒𝑒−𝑏𝑏𝑡𝑡) was calculated.  Initial values for io, a, and b were 

guessed.  The next values calculated were the sum of the squares due to error, SSE, the 

total sum of squares, SST, and the Goodness of Fit, R2.  

𝑆𝑆𝑆𝑆𝐸𝐸 = � �𝑖𝑖𝑒𝑒𝑜𝑜𝑑𝑑𝑠𝑠𝐻𝐻,𝑀𝑀 − 𝑖𝑖𝑀𝑀�
2𝑀𝑀=1200

𝑀𝑀=1
 

𝑆𝑆𝑆𝑆𝑆𝑆 = �� 𝑖𝑖𝑀𝑀2
𝑀𝑀=1200

𝑀𝑀=1
� −

1
1200

�� 𝑖𝑖𝑀𝑀
𝑀𝑀=1200

𝑀𝑀=1
�
2

 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆

 

Next, the initial fit values for io, a, and b were all improved using the MS Excel 

solver tool shown in Figure 50. 
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Figure 50.  To improve the model fit, the MS Excel solver tool was first selected from the data menu.  Next, 
the R2 cell is set as the objective cell and the desired objective value is set to unity.  The cells holding the 

constant values io, a, and b of the model are selected for simultaneous processing to minimize SSE; to have 
R2 approach unity and to achieve optimal model fit to the actual data. 
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